Refine your search:     
Report No.
 - 
Search Results: Records 1-3 displayed on this page of 3
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Development on laser cutting technique to suppress spatter particles aiming at disposal of radio-active waste

Naoe, Takashi; Teshigawara, Makoto; Futakawa, Masatoshi; Mizutani, Haruki; Muramatsu, Toshiharu; Yamada, Tomonori; Ushitsuka, Yuji*; Tanaka, Nobuatsu*; Yamasaki, Kazuhiko*

Proceedings of 8th International Congress on Laser Advanced Materials Processing (LAMP 2019) (Internet), 5 Pages, 2019/05

Laser cutting is one of the options in the disposal of radio-active waste, such as spallation neutron target vessel in J-PARC, etc. Due to unique characteristic of laser, such as non-contact system, it is more easily to provide remote-controlled system in comparison with conventional one, such as mechanical cutting machine, etc. However, a demerit of laser cutting is the sputter and fume caused by laser cutting, resulting in contamination with radio-active materials its surroundings. Recently it was developed that the spatter suppression technique by controlling laser beam profile in laser welding process. In order to apply this suppression technique to laser cutting, first of all, we attempted to observe the phenomenon at melting area during laser cutting using a high-speed video camera in order to make the physical model. The result showed that the appearance of fume and sputter were independently confirmed in the time evolution.

JAEA Reports

Research on removal technologies of fuel debris and in-vessel structures using laser light (II); Research activities on FY2013

Muramatsu, Toshiharu; Yamada, Tomonori; Hanari, Toshihide; Takebe, Toshihiko; Nguyen, P. L.; Matsunaga, Yukihiro

JAEA-Research 2014-018, 41 Pages, 2014/09

JAEA-Research-2014-018.pdf:42.21MB

In decommissioning works of the Fukushima Daiichi Nuclear Power Plants, it is required that fuel debris solidifying mixed materials of fuels and in-vessel structures should be removed. The fuel debris is considered to have characteristics, such as indefinite shapes, porous bodies, multi-compositions, higher hardness, etc. from the knowledge in the U.S. and the Three Mile Island nuclear power plant. Laser lights are characterized by higher power density, local processability, remote controllabilitiy, etc. and can be performed thermal cutting and crushing-up for various materials which does not depend on fracture toughness. This report describes a research program and research activities in FY2013 aiming at developing removal system of fuel debris by the use of laser lights.

Oral presentation

3 (Records 1-3 displayed on this page)
  • 1